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The inclusion of anharmonic effects is important in vibrational population inver- 
sions in CO-lasers [I, 2], in relaxation processes in jets [3], in thermal dissocia- 
tion [i], in the kinetics of chemical reactions with high thresholds [4], etc. 
Usually these effects are studied by including anharmonic corrections to the 
kinetic constants in the discrete model of single-quantum transitions or in the 
diffusion approximation [i, 2]. In [5] a method was given of solving the relaxa- 
tion equations fro arbitrary forms of the rate constants and the spectrum of the 
molecule. The method is valid when the ratio of the population densities of 
neighboring levels varies smoothly with quantum number. It was shown in [5] that 
this approximation can be used to construct analytical solutions for a wide class 
of problems. In the present paper the method of [5] is extended to the case of 
equations with variable coefficients. The properties of the solutions for VT- 
relaxation of anharmonic molecules are analyzed, and the inclusion of sources is 
considered. A simple method of taking into account multiple-quantum transitions 
is given, as well as an extension of the method to an arbitrary mixture of gases. 
The population densities are calculated and the possibility of using our solutions 
in relaxation gas dynamics is discussed. 

I. Harmonic Model with Single-Quantum Transitions. We present briefly the principal 
results of the harmonic model [I, 2] for a mixture of gases as needed below. The vibrational 
relaxation of a mixture of harmonic molecules of types s = i, 2, ... in the single-quantum 
approximation reduces to a system of equations for the population densities ns(V , t) where 

is the number of the vibrational level, and their first moments as(t) = n~wns(v,t ) (the 
average numbers of quanta per molecule): v 

~(~, t) = Gs[a(t)l(~ + ~)~s(~ + ~, 0 -{F~r~(t)](~ + t) + G,[~(t) lv}~(~,  t) + F~[a(t)]~s(~ - ~, t); ( 1 . 1 )  

~s (t) = Kol (8) - -  [Kio (s) - -  Kgi (s)] a~ (t)~+ 5~, [K~  (s, s~)~ (t) ( l  + a,~ (t)) __ K~  (s, sl) a,~ (t) (l + a, (t))] ns,. ( 1 . 2 )  
S l ~ S  

Here 

Sl ~S 

Fs [a (t)] = Kol (s) + K ~  (s, s) n,a~ (t) -t- ~ , K~~ (s, s~) n~ a~ (t), ( 1 . 4 )  
Sl~S 

Klo (s, s) lO where KIo(s), -01 Kol (s, s) ' ol ---- = K01 (si, s) are the rate constants of the corresponding 

transitions for VT, VV, and VV' processes; ~(a1,=~, ...,a s .... ). For a Boltzmann heat reservoir 
the detailed balance relation holds between the rate constants of the fundamental transitions: 

where T is the temperature of the gas, and Os----___~0)s~ is the characteristic vibrational 
temperature of a molecule of type s. 

The exact solution of the system (i.i), (1.2) is not known. In applications one 
usually uses approximate or quasistationary solutions, which are valid for certain relations 
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between the characteristic times of the W, VV', and VT relaxation processes [I, 2]. This 
is also the case for the solution of the corresponding equations in the presence of delta- 
function sources [6]. The most interesting result of the harmonic model is canonical in- 
variance, which states that an initial Boltzmann distribution in a single-component system 
preserves its form in time 

n . ( v , t ) = n ,  l - - e x p  - - ~  e x p k - - ~ - ~ ) ,  

and only the vibrational temperature Ts(t) changes. 
equat ion 

exp = 1 f l -  % ( t )  ' 

The latter is related to ~s(t) by the 

=.,(0) = CZ.o. ( 1 . 7 )  

2. VT Relaxation of Anharmonic Molecules. In the single-quantum approximation the 
problem reduces to the solution of the system of equations 

n(v, t) = K.+I,.  n(v -F l,  t) --[K.,y+l + K.,v-l ln(v,  t) @ K._,, .n(v:-- t,  t), (2 .  I )  

whose c o e f f i c i e n t s  can  depend  on t i m e  t h r o u g h  t h e  t e m p e r a t u r e  o f  t h e  ga s .  We i n t r o d u c e ,  as  
in [5], the ratio of neighboring population densities 

n (v .  t~ " K v - ~  
n (~-- t,t) a ( v - - i )  f ( v - - l , t ) ,  a (v - -  i ) ~  ~ 1 ,  ( 2 . 2 )  

After substitution of (2.2) into (2.1), 
[5], we obtain a system of equations for the functions f(~, t): 

](v,_t) = A(v, t)p(v,_t) + B(~,, t.)l(v, t) + C(v, t) + n(v, t)/(v, t), 

where A(v, t) = Kv+1.~+~ -- Kv.v+1; ; 

B(v, t) = Kv,v+l + Kv,~-i --  K ~ + , , ~  --  K~+l,v; 
C(~, t) = K.+I,~ -- K~,~_I; 

• (v, t) = e (v, t) - -  d In a (v ,  t); 

and after several reductions analogous to those in 

When the dependence of f(~, t) on ~ is smooth we have, approximately 

l ( . , , , t )  f ( , , +  l, t) ..., t ,  i~(v, t)l<< 1. 
ICv-- t ,O ~- /(~,.0 - -  

( 2 . 3 )  

( 2 . 4 )  

If the time scales of f(v, t) and in a(v, t) are significantly different, the quantity 
K(v, t) is small. Therefore the solution of the system (2.3) can be written as a power 

series in K 

I ('~, t) - -  ~ f o  (,,,. t)-.* (~; l (~-') (0),  ! (v, o) = f~ (y., o).~- 1o ('0. 
l 

(2.5) 

A(v, 

To zero order in K, (2.3) is a general Riccati equation, whose coefficients satisfy 
t) + B(v, t) + C(v, t) = O. In this case the general solution is [7] 

~ +/,,(,,) + [~-&(,:~] {! ec,~, t,)[A (,,, t')+co,, t,)1 a t ' -E  (,~, t)}. 
1(o) (,~, t) = ~ ' } 

t +  1o(~)+ [t--]o(V)] {! E.(v, t')[A (v, t')+C(v, t')ldt'+E(V, t) 

( 2 . 6 )  

E (v,, t) ~ exp [A (v, t') - -  C (v, t')] dt '  . (2.7) 
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tion 

Hence 

After substitution of (2.5) into (2.3) we obtain a linear equation for the ~-th correc- 

l--1 

)(~) (v, t) = [2A (v, t) 1(0, (v, t) + B (v, t)] l (~ (v, t) + A (v, t) ~ 1(~)(v, t) ](~-~)(v,~ t) + 1(~-o (v, t). 
h = l  

(2.8) 

l (~ (v, t) = D (v, t) ~ D -~ (v, t') A (v, t') E 1(~)(v,, t') l (~'~) iV, t') + ](~-0 (% t') d t ' ,  ( 2 . 9 )  
0 h = l  

1 
Successive application of (2.2) gives for the population densities n(v, t) the expression 

v--I v0 ~--1 

n ( v , t ) = n O - Z ( t ) I I a ( k ) l ( k , t ) ~  O ( t ) = i +  E I I a ( k ) l ( k , t ) ,  ( 2 . 1 0 )  
h = 0  V ~ l h = o  

where v 0 is the limiting value of the discrete vibrational spectrum. 

We discuss the basic properties of the solution. First, it has the correct normalization 
for any form of the function f(v, t). If the coefficients of the system (2.1) do not depend 
on time (relaxation into a heat reservoir), then the solution (2.6) reduces to that found in 
[5]. Indeed, in this case 

"r ----- C(w) - -  A(v)  = K , + l . ,  - -  Kv+l.v+2 q- Kv . .+1  - -  K~.v-1,  

and ( 2 . 6 ) ,  w i t h  t h e  h e l p  o f  ( 2 . 1 1 ) ,  t a k e s  t h e  fo rm 

1(o) (V* t), =-= [ t  - -  to (v)] e.xp [ - -  t/~ (~:)1 ~ (v) + / o  (v) - -  ~ (v) 
[t --/o (v)l exp [ -  t/~ (v)l + /o  (v) - ~ (v) -~ 

~(~) ---- (Kv+,.v -- K,,v_O/(K,+,.,+~ -- K,,,.+,). 

(2.ii) 

( 2 . 1 2 )  

For a monotonic dependence of the rate constants on the quantum numbers and temperature it 
follows from (2.7) that E(v, t) + 0. Therefore when t>>z(w) f(o)(v, t)~_ I and the solution 

t~ 
(2.10) gives the quasistationary distribution nq(v) determined by the well-known condition 
[8] 

n~v)lnq(~ -- i) = a(v -- 1). ( 2 . 1 3 )  

For  a Bo l t zmann  h e a t  r e s e r v o i r  a(v - - / ) - = e x p  {--[e(v) -- e(v -- t )] /kT} and w i t h  t h e  h e l p  o f  ( 2 . 1 3 ) ,  
e q u a t i o n  ( 2 . 1 0 )  r e d u c e s  t o  a Bo l t zmann  d i s t r i b u t i o n  w i t h  t h e  e x a c t  a n h a r m o n i c  s p e c t r u m  
e(,)" 

%'0 
nq(v) 7~ B (,) nq;:  exp [-- e(~)/kT], QB = ~' exp [-- e (v)/kT]. ( 2 . 1 4 )  

If ~(v) in (2.11) is interpreted as the relaxation time of the function f(v, t), then the 
evolution of the population density of level v is determined, as seen from (2.10), by all 
x(~) with 0 < ~ < v - i. 

We consider the behavior of the solution (2.10) in the harmonic approximation for a 
non-Boltzmann heat reservoir, when z-1 = KI ~ _ K01, ~ = K1o/Kol = a -I, ]o(v) == ~n(v, O)/n(~ -- J,O) -~ 

}/{ a / ( v , t ) ~ - q ( v , t ) = t e  ~ [ l - - ~ ( v ) ] + ~ ( v ) - - I  e - ~ [ t - - ~ ( v ) l + ~ f ~ ( v ) - - l ] } .  ( 2 . 1 5 )  

We see from (2.15) that for the harmonic model the dependence of q(v, t) on v is determined 
by the initial conditions only. If this dependence is weak then q(v, t) ~ q(t) and the 
solution (2.10) gives 
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n(v, t ) =  n[1 - -  q(t)]qv(t). ( 2 . 1 6 )  

The function q(t) can be expressed in terms of ~(t), whose explicit form (with the inclusion 
of VT transitions only) is found from (1.2) without the terms inside the square brackets: 

a ( t )  = 1 / (~  - t )  + [ a (o )  - 1 / (~  - 1)1 e x p  (-t/~). ( 2 . 1 7 )  

Combining (2.17) and (2.15), we have q(t)= ~(t)/ll + =(t)], =(0)= ~(v)/l~ --~(v)l With the help 
of (1.7) the solution (2.16) transforms into (1.6), i.e., it has the property of canonical 
invariance. Therefore canonical invariance is a consequence of the harmonic approximation 
for the rate coefficients and the smoothness of the initial distribution. The solution 
(2.16) can be considered as a generalization of (1.6) for a non-Boltzmann heat reservoir and 
when q(~, t) is weakly dependent on 9. 

A simplification of the general solution (2.10) is possible by expressing the functions 
A...E, f0(9), a(v, t) in terms of the VT transition rate constants. 

As an illustration we calculated the distribution function, as given by (2.10), for the 
system Ar + N 2 in a Boltzmann heat reservoir, for both the harmonic model (Fig. i, dashed 
curves) and the anharmonic model (solid curves) for various gas temperatures T and initial 
vibrational temperatures TV(0). Figure i, which presents graphs of the distribution function 
at the times t = I0 z2, i0 i3, i0 z4, i0 zs a.e. (curves 1 through 4) for TV(0) = 1000~ T = 
300~ shows that anharmonic effects lead to a slowing of the relaxation and to a violation 
of canonical invariance. When we have the opposite relation between the temperatures 
(Tv(0) = 300~ T = 1000~ the relaxation time to equilibrium is comparable in the two 
models (Fig. 2, t = 107 , 108 , l0 s , 10 I~ a.e.; curves 1 through 4), however the deviation 
from canonical invariance becomes much more significant when anharmonic effects are taken 
into account. In the calculations the data for the VT exchange rate constants in the system 
Ar + N 2 was taken from [9]. 

3. Relaxation of Anharmonic Molecules in the Presence of Sources. In the presence of 
external sources the original system of equations (2.1) is more conveniently written in vector 
form (n(t) = (n(0, t), n(l, t) ..... n(~ 0, ~))) 

n(t) = K.n( t )  -I- n[n(t),: t l ,  n(O) = "o,: ( 3 . 1 )  

where the vector n, which in general depends on the population densities n(t) and the time t, 
describes a set of sources. 

A. Let ~ be a constant vector, i.e., in the gas we have a group of sources and sinks 
with constant intensity ~(~). The solution of the linear inhomogeneous system (3.1) is 
written as a sum of a general solution nl(t) of the homogeneous system (as found in Sec. 2), 
and a particular solution n2(t) of the inhomogeneous system 

n(t) ---- nl( 0 -~ n2(O. 
The inhomogeneous solution is written in the form 

~'0 
n~ (t) = n~ + g (th rl---- ~ n ( , ;) ,  

~ ;=0  

(3.2) 

(3.3) 

where the vector i10 is obtained from the condition 

K-n ~  >.] n ~ 
~ = 0  

(3.4) 

and hence n o is the quasistationary distribution in a system without sources. According to 
(2.10), the solution of the system (3.4) has the form 

n ~  4-' n ~ [ +~11 
~'~' ~=1o K.+I,,? , , = 0  ~ro ~.- , , . ]  " 

(3.5) 

After substitution of (3.2) through (3.4) into (3.1), we obtain for g 

338 



5 10 t5 fO 25 ,) 

200 [___ . . . . . . . . . . .  ' 

Fig. 1 

5 ~'0 !8 

.50 ' a ~  
IO0 . 

150 

eool-" , 

,?o 75 ,) 

Fig. 2 

g = K.g  + H --'nON. ( 3 . 6 )  

Because it is sufficient to find an arbitrary particular solution of the system (3.1), we 
assmne that g = const. Then it follows from (3.6) that 

K . g  : n~ - -  II. ( 3 . 7 )  

Equation (3.7) leads (in the single-quantum approximation) to the system of recursion rela- 
tions between the components of the vector g: 

g(v + t)K~+,,~ = g ( v ) ( K v , ~ + l  + K v ,  v - O  - -  g (v  - -  I)K~-I,~ + ~ ( ~ )  - -  H(v), 

and the solution is found in the explicit form 

0 .... ,0 (v) ~ n (v) R ( p -  ~) - P (~ - 
g (v) = g t~,J ~ + ~ ~ . . . .  ~), v ~> t; 

where the quantity g(O) is determined from the normalization condition 

"r "q 

g (o) n o (o) 

Here B ( v ) - - ~ l  ~'~ n o X~ (~); p (v) ~ ..~ n (@. 

( 3 . 8 )  
'VN. 

~ g ( ~ ) = o  : 
%'=0 

~3.9) 

B. We consider the case when ~ is a vector which is linear in n(t): 

n = A..(t)~ (3.10) 

where A is a diagonal matrix with elements I u. For example i v > 0 for an electron excita- 
tion and l~ < 0 for dissociation. With the help of (3.10), the system (3.1) takes the 
form 

n(t) : (K H- A).n(t) .  ( 3 . 1 1 )  

The general solution of (3.11) is written in the same form as in Sec. 2, where it is 
assumed that the method of (2.4) still holds when there are sources. After replacing (2.2) 
and performing a series of reductions, we obtain in place of (2.3) 

](v, t) = A (v, t)fl(v, t) + [B(v, t) + ~,+,(t) --  k~(t) l/(v, t) + C(v, t) + • t ) l ( v ,  t). ( 3 . 1 2 )  
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This is a general Riccati equation and can be integrated only for particular choices of the 
X~(t) (for example when %~+~ --lv i-• ). Therefore we assume that the coefficients in 
the system (3.11) are constants. Then (3.12) can be written as 

i(v, t) = A(v)[/(v~ t) -- z~(v)]l/(v, t ) - -  z,(v i] + e(v, t), 

w h e r e  z ~ , z ( v )  a r e  t h e  r o o t s  o f  t h e  q u a d r a t i c  e q u a t i o n  (z~ < z 2)  

(3.13) 

w i t h  ?(v)-~- [Z~. 1 - k v + B ( v ) ] / 2 A ( v ) .  
o r d e r  i n  

z:(v) q- 2?(v)z(v) + ~(v) = 0 

Wi th  t h e  c o n d i t i o n  ( 2 . 4 )  we f i n d  f rom ( 3 . 1 3 ) ,  

(3.14) 

to zero 

, , ( 3 . 1 5 )  

~t~) [%(~) - 1o (~)] -- [t~ (v) - to (~)I 

"t:-~(v) = (K,,+~,v+~ -- K,,,v+~)[Z~(~) - -  ~tt(v ) I. 

If the intensities of the sources are such that there are two identical roots in (3.14), 
then in place of (3.15) we have (z I = z= = /~(9)) 

/ (v, t) ----- z 1 ( v ) -  [z~ (v) - -  fo (v)] I + (11 (v) - -  ]o (v)) ~ , ( 3 . 1 6 )  

�9 -~(v) --  K~+~,v+., - -  K~,~+,. 

When (3.14) has complex conjugate roots the solution of (3.13) takes the form 

t 

/ b' ,  t) = 
t , ,~ 

T-'(v) ---- (g~+,.,+~ -- Zv.,+l)[~(v) ?~(v) ],/2. 

(3.17) 

Unlike (3.15) and (3.16), the solution (3.17) has an unusual structure: it describes an 
oscillation of the function f(v, t) about the initial value f0(~), which is typical in self- 
oscillating relaxation regimes [i0]. Since in this case the condition (2.4) is rapidly vio- 
lated, this solution is valid only when f(~, t) ~ f0(v). 

4. Inclusion of Multiple-Quantum Transitions. We consider now the possibility of 
approximately taking into account multiple transitions in our method. Multiple-quantum 
transitions are significant for the vibrational relaxation of strongly excited molecules. 
We write the right hand side of the system (2.1) as a sum over the number of transferred 
quanta 

(% t) ~ ~ [K~+6,*n (v + 6, t) - -  (Kv,v+6 + Kv,~-6)n (v, t) + K~_~,vn (~ - -  ~, t )] .  ( 4 . 1 )  
6 

Generalizing (2.2), we find 
6--1 

B=0 

Substituting (4.2) into (4.1) we obtain in place of (2.3) 

~, 0 ~ [b (v, 6) / (v, t) + c(v; 6) + d (v, 6)/-6 (v, t)] + ~ (v, t). 
YeT, t) 

6 

(4.3) 

Here b, c, and d are coefficients which can be expressed in terms of the rate constants of 
multiple-quantum transitions. We assume that these coefficients are constants, and the 
quantity e(~, t) is, as before, small (lel << i) when the condition (2.4) is satisfied. 
The general solution of (4.3) to zero order in e reduces to quadratures 
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/O'd) 

Note that if, in addition to (2.4), the condition a(v) ~ a(v - i) is also satisfied, then the 
solution of (4.3) is simple 

where 

l (v, t ) =  
exp [--  t/~:* (v)] 1t - - / o  (v)] ~]* (v) - -  [p* (-r - -  ]o (v)] 

exp [-- tl'r ~v)l [t -- l o (~)] --. [[~* (v) -- l o (v)] '~ 

['v* (v ) ] -  x _--- ~ [ v, (v, 6)1 -~ = ~ [ K ~  ~,~+x-~ -- Kv,~-~ 
6 

-- K~+~,~+~+~ + Kv,~+~]; 

(4.4) 

, , K -I 

It is evident that each of the terms in (4.4) can be interpreted as an inverse relaxation 
time of the function f(v, t) due to transitions where the quantum number changes by the 
quantity 6. 

5. Vibrational Relaxation in a Mixture of Anharmonic Molecules. We consider an arbi- 
trary mixture of anharmonic molecules of types s = I, 2, ... and write the system of equa- 
l:ions for the mixture in the form (single-quantum transitions) 

n~(v, t) = K~+~,v(s, t) ns(v + t,  t) * �9 - [n~,~+~(~, t) + K[~_ ,  (s, t)l -~ (,:, t) + ~ _ ~ , ~  (~, t ) . ~ ( , , - -  l ,  t), ( 5 . 1 )  

where the coefficients K~v(s , t) are determined by 

, ~ .,] t , 
K~+~,v (s, t) K~+l,v (s) + M~,+I,~ (s, t) + ~ l.,+l,V (s, t), Kv v+l (s, t) 

= Kv,v+l (s) + Nv,~+l (s, t) + N$,~-+1 (s, t), 

M~+L~ (s, t) ~] . . . , . + i .  ' ' = ttv+,,~ (s, s) n~ (~t, t), M~+,,~ (s, t) ---- ~ -~v+l.-~r""'~+1 (s, sl) n h'(B, t), 
p. p~,s~ 

Nv,v+~ (s, t) = ~ r,'~+',~ ---~v,,:+, (s, s) n~ (~ + t ,  t), N '  ~,~+~ (s, t) 
I,t 

(5.2) 

If we assume that the dominant contribution to the moments of the distribution function comes 
from the lower levels, for which the harmonic model in D can be used for the rate coefficients 
[i, 2], then it is not difficult to obtain approximate relations for M and N which are analo- 
gous to the corresponding terms in (1.3) and (1.4): 

M~+a,~, (s, t) = n~ [t + a~ (t)l IQ~ (s, s), M'~+a,4 (s, t) --  ~ n h [1 + Fz~ (t)] K~.Lv (s, s~), 
gI~S 

(5.3) 

Kv,v41 (s,.s), N$,~+1 (s~ t), == ~ nha~ * (t) K TMv,v+, (s, si). 
sl~s 

Here K ~176 are the effective rate constants of the corresponding transitions In the ~v 

framework of the approximation (5.3), using the method discussed in Sec. 2, we can obtain an 
analytical solution of the system (5.1). It is sufficient to replace Kp~ by K~ in equations 
(2.6) through (2.10). The time dependence of the functions =s(t) is determined from the 
solution of a system analogous to (1.2). 

and Nuv are slowly varying functions of time over times of the order If the moments M~v �9 
of the relaxation times s(~) (determined below) then one can use (2.12) for fs(V, t) in 
(2.10). With the help of (2.11) we then obtain the following relation for ~s(V) 
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T7 ~ (v) = [K,,+L,, (s) ~- Kv,y~ ~ (,r --  Kv+l,,,.+: (s) --K,,,~._ 1 (~,j] 

+ IM,,~ ,.,, 69 + N,, , . ,  (s) - -  M , , , - 1  (s) --N~+~., ,+~, (s)] + 
t 7r r r t  

+ [ i , , ~  ~.,. (,~.) + A ,.,,,§ (,~) - M,.  ,,_~ (~) - :~.,._~,,,.,:.~ (s)] ,  

which shows that the relaxation time of the function fs(~, t) is given by the largest of the 
VT, VV, or W' relaxation times. The advantage of this solution is that when t >> ~s(V) 
(2.10) transforms into the quasistationary distribution which is described by an expression 
analogous to (2.13) [8]: 

= , ,  (5 4) /~b ' - -1)  ~.,~,_l(s)" 

If we substitute the exact expression for the moments (5.2) into (5.4), then the solu- 
tion of this system will naturally be the stationary Boltzmann distribution (2.14). Quasi- 
stationary distributions are formed for particular times and regions of the spectrum when 
one of the processes in the limit t >> Ts(O) is dominant. For example, if in a given 
region of the spectrum ~ processes are dominant, then a distribution of the Trinor type 
[i, 2] is valid 

rt~q(~,, t) = nsQ[. 1 exp {v%~ (t) - es (v) /kT},  

where the partition function Qs is assumed known over the distribution valid for all v. 
The q u a n t i t y  X s ( t )  r e m a i n s  u n d e t e r m i n e d  by t h e  c o n d i t i o n  ( 5 . 4 )  and t h e  e x a c t  e x p r e s s i o n s  
(5.2). If we use the approximation (5.3) we can write 

exp [%s (t)] = exp lT-]  ~ t  O, = e~ (t)/k. 

h s y s t e m  o f  e q u a t i o n s  f o r  a ( t )  o f  t h e  form 

= * ( a )  ( 5 . 5 )  

i s  o b t a i n e d  by d i f f e r e n t i a t i n g  t h e  r e l a t i o n  ~ ( t ) = n 2 1 ~ v n , ( v ~ t )  w i t h  r e s p e c t  t o  t ,  and 

u s i n g  ( 5 . 1 )  and t h e  e x p l i c i t  s o l u t i o n  f rom f rom ( 5 . 4 ) .  The T r i n o r  e x p o n e n t  •  can have  
e i t h e r  s i g n  d e p e n d i n g  on t h e  q u a n t i t y  a s ( t ) .  We s e e  f rom ( 1 . 7 )  t h a t  t h e  s i g n  o f  X s ( t )  i s  
t h e  same as  t h a t  o f  t h e  d i f f e r e n c e  T s ( t )  - T. 

A more exact quasistationary distribution can be found by using other solutions of (5.4) 
which are consistent with equations (5.5) or their more exact analogs obtained from (5.3). 

6. Dynamical Equations of a Vibrationally Nonequilibrium Gas. The analytical solutions 
found above can be used to construct a new, more exact model of relaxation gasdynamics 
allowing a self-consistent treatment of the behavior of the population densities themselves, 
and also the effect of relaxation processes on the flow dynamics. 

We consider a mixture of diatomic molecules with slow vibrational relaxation. The 
transport equations, including viscous, heat conduction, and relaxation effects are written 
in the form 

dp du d 
d--/-F PV.U = 0, p~T + v . P  = 0, p ~  [ E ( T ) +  E ~ ] = - - V . q - - P : v u ~  

P = (p - ~V" u + p,.) I - 2 ~ S ,  p = nkT, pE~ = ~ n, (v) e~ (~,),, 

n . = ~ n ~ ( v ) ,  P = ~ ' 9 ~ ,  q ' = - - X v T - - E L ~ ( v ) d ~ ( v ) ,  

dn, (v) 
a--r-  + n~ (v)V.  u = - V" [n~ (~) ~ (~)1 + 4 (~), 

u~ (V) = y '  B~,, (~, ~t) a~, (~) - -  C.~ (~) V In r ,  
| t s  l 

d.,(~) = V [n,(~)/nl  -k [n,@)/n - -  p /p ]  V P. 

(6. l )  
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Here S in the deformation rate tensor, ds(v) is the vector of the diffusive thermodynamic 
forces, Us(V) is the velocity of diffusion of molecules of type s in vibrational state v; 
D, ~, Pr are the coefficients of shear and bulk viscosity, and the relaxation pressure, 
respectively; % is the thermal conductivity; Ls(v) , Bss1(V, ~) and Cs(~) are quantities 
expressible in terms of the coefficients of diffusion and thermodiffusion; Is(v) is the 
collision integral, taking into account VT, W, VV' processes and sources; E(T) is the 
energy density of the equilibrium degrees of freedom. A detailed discussion of the ex- 
pressions for D, g, Pr, Ls(V), Bss (v, ~), Cs(V) , ~ and their connection with the popula- 

i 

tion densities ns(V) for the case of slow relaxation is given in [ii]. The general problem 
(6.1) is extremely complicated, and therefore we discuss briefly possible methods of 
simplification of the problem which could be used to find a solution for the distribution 
function ns(~). 

i. For an inviscid and non-heat-conducting gas (~ = $ = Pr = ~ = Cs(v) = Ls(v) = 
Bssl(V, u) = 0), vibrational relaxation affects the dynamics of the gas only through the 
nonequilibrium vibrational energ density E r. Therefore one can include the relaxation 
in the following approximate way. 

When ~s(V) << T << ~v, where T v is the time to establish an equilibrium distribution 
over the vibrational degrees of freedom, and T is the characteristic time scale of the flow, 
ns(V) can be found from (2.13) and (5.4), considered as simultaneous equations with the gas- 
dynamical equations. It is important to realize that this case does not lead to equilibrium 
in the theory of jets [3] and quasistationary distributions are possible. 

For a stationary, one-dimensional problem (plane flow, flow from a spherical source), 
we can use solutions taking into account the parametric dependence of the coefficients on 
time (or the coordinate), as obtained Sec. 2. 

For nonstationary problems these solutions can be used if we write the equations in 
Lagrangian coordinates [3]. In this case, E r can be calculated by taking a simplified 
relaxation equation of the type (5.5) for ~(t) (in particular, a generalization of the 
Crookes approximation in the theory of VT relaxation [5]). 

2. When viscous and heat-conduction properties of the gas are taken into account, our 
solutions can be used to calculate both E r and the other relaxation coefficients. Of special 
interest is an analytical solution of the problem with sources (Sec. 3). This problem is 
relevant in the construction of mathematical models describing possible relaxation in- 
stabilities. 
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GAS-DYNAMIC ACCELERATION OF IONS IN AN INHOMOGENEOUS 

MAGNETIC FIELD 

E. M. Syresin UDC 621.039.61 

i. Introduction. The basic features of gas-dynamic acceleration of ions in a homo- 
geneous magnetic field were deduced in [1-4], wherein the existence of a Debye discon- 
tinuity was indicated, and self-similar solutions constructed, permitting description of 
ion acceleration for "steplike" application of the accelerating voltage. The form of the 
potential well for oscillating electrons found in [2] is shown in Fig. i. The behavior of 
the potential at the Debye discontinuity is time-independent, while in the region ~ < #D 
the width of the well increases linearly with time. 

As was shown in [3, 4], the efficiency of ion acceleration depends significantly on 
the thickness of the anode foil. Therefore it is desirable to select the foil such that the 
electrons transfer their energy to the accelerated ions significantly more rapidly than 
they lose energy to the foil. However reduction in foil thickness leads not only to in- 
creased ion acceleration efficiency, but also to a reduction in angular scattering of elec- 
trons within the foil, which finally leads to cutoff of the diode and a reduction in ion 
current density [4]. 

In order to weaken the corresponding diode cutoff limitation and increase the efficiency 
of energy transfer to ions [3] proposed a method of gas-dynamic acceleration of ions in an 
inhomogeneous magnetic field, of high level in the diode region, but weak in the acceleration 
region (Fig. 2). An electron beam with supercritical current is injected into the drift 
chamber between the sandwich of foils A and F, the space between which is filled by a 
neutralizing plasma. Under such conditions a large portion of the electrons injected into 
the chamber are reflected and begin to oscillate between the real cathode and a "virtual 
cathode" which appears in the drift chamber beyond foil F. As a result a dense cloud of 
oscillating electrons is formed near foils A and F. Under certain conditions the electrons 
may produce on the surface of foil F, located in the weak magnetic field region, a layer of 
plasma P, which serves as an ion source. Under the action of the electric field a cloud 
of ions is extracted from this plasma, and compensating the space charge of the oscillating 
electrons, is accelerated along the chamber. 

The present study will evaluate the method of gas-dynamic acceleration of ions in an 
inhomogeneous magentic field proposed in [3] in two variants - a strongly scattering and 
nonscattering foil F. In the first variant the presence of the inhomogeneous magnetic field 
leads to an increase in ion current related to increase in the flux area in the acceleration 
region, while in the second the increase in current is insignificant, but nevertheless the 
efficiency of ion acceleration is increased, because all the energy of the oscillating 
electrons in the accelerated region will be included in a longitudinal degree of freedom. 
This fact leads to an increase in the rate of expansion of the plasma synthesized from 
ions and oscillating electrons. Because of this increase in the mean rate of plasma ex- 
pansion the efficiency of acceleration increases also. 

2. Oscillating Electron Distribution Function. We will consider ion acceleration for 
the case where the anode foil is strongly scattered and foil F is superthin. The thickness 
of the anode foil is then such that the following relationships are satisfied: 
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